CONSTITUENTS OF THE GENUS OXYLOBUS

FERDINAND BOHLMANN, LIEVY HARTONO, CHRISTA ZDERO and JASMIN JAKUPOVIC Institute for Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, West Germany

(Revised received 10 August 1984)

Key Word Index—Oxylobus adscendens, O arbutifolius, Compositae, labdane derivative, euparin derivative

Abstract—The aerial parts of Oxylobus arbuitfolius and O adscendens gave eudesmanolides and labdane derivatives as well as two new euparin derivatives

The small genus Oxylobus (Compositae, tribe Eupatorieae) is placed in the subtribe Ageratinae [1] So far, two species have been studied chemically While O glanduliferus gave labdane derivatives [2], O oaxacanus afforded sesquiterpene lactones [3] We have now studied two more species The aerial parts of O arbutifolius (HBK) A Gray gave costunolide, β -cyclocostunolide [4], arbusculin B [5], $11\alpha,13$ -dihydrocostunolide [6], 8,15-dihydroxylabdane, also present in O glanduliferus [2], isolated as its 15-O-acetate, the corresponding 15-acid [7] and the thymol derivatives 2 and 3 [8]

The aerial parts of O adscendens gave α - and β -cyclocostunolide [9], arbusculin B, costunolide, the acetate of the thymol 2, 2-oxo-labd-8(17)-en-15-oic acid as well as the acetate 1, which has already been prepared from the corresponding alcohol [7]. The configuration at C-13 was not determined Furthermore, the hydroper-oxide 4 and the euparin derivatives 5 and 6 were present

The structure of 6 could be deduced from the ¹H NMR spectrum (see Experimental), which was similar to that of the corresponding angelate [10] In the ¹H NMR spectrum of 5, the H-8 quartet was shifted upfield, indicating that the corresponding alcohol was present (see Experimental) The structure of 4 also followed from the ¹H NMR spectrum (see Experimental) The presence of a hydroperoxide was deduced from the broadened singlet at δ 7 84 Most signals were similar to those of arbusculin B The configuration at C-3 was deduced from the small couplings, which agreed only with the presence of an axial oxygen function on inspection of a model Biogenetic considerations also agreed with this assumption

The chemistry of Oxylobus seems to be very uniform. The occurrence of labdanes, thymol and euparin derivatives indicates a close relationship with Ageratina while the sesquiterpene lactones may be useful in separating these two genera.

EXPERIMENTAL

The air-dried plant material (800 g) of Oxylobus arbutifolius (voucher Turner 15357, TEX) was worked up in the usual way [11] The CC (SiO₂) fraction obtained with Et₂O-petrol (1 9) on TLC (SiO₂, same solvent) gave 800 mg 2 and 30 mg 3 The CC fraction with Et₂O-petrol (1 3) afforded 200 mg costunolide The CC fraction with Et₂O-petrol (1 1) on standing in Et₂O at -20° gave 7 g crystals, mp 107° , which were identical with costunolide TLC (Et₂O-petrol, 1 1) of the mother liquor gave

60 mg β -cyclocostunolide (mp 67-68°, lit 68-69° [4]), 300 mg arbusculin B (mp 85°, lit 86-88° [5]), 300 mg 11 α ,13-di-hydrocostunolide (mp 76°, lit 77° [6]) and 500 mg costunolide The CC fraction with Et₂O and Et₂O-MeOH (9 1) (1 H NMR no acetate methyl) was heated for 1 hr with Ac₂O TLC (Et₂O-petrol, 1 1) gave 500 mg of the monoacetate of 8,15-dihydroxylabdane and 300 mg of the corresponding acid

The air-dried plant material (320 g) of Oxylobus adscendens (voucher Turner 15399, TEX) was worked up as usual [11] The CC (SiO₂) fractions were as follows 1 (Et₂O-petrol, 1 9), 2 (Et₂O-petrol, 1 1) and 3 (Et₂O and Et₂O-MeOH, 9 1) TLC of fraction 1 (Et₂O-petrol, 1 9) gave 6 mg of the acetate of 2 TLC of 10% of fraction 2 (Et₂O-petrol, 1 2) afforded 16 mg 6 (R_f 065), 80 mg 1 (R_f 055) and 45 mg 5 (R_f 047) Repeated TLC of fraction 3 (Et₂O-petrol, 1 1 and Et₂O-CH₂Cl₂-C₆H₆, 1 1 1) gave 250 mg α -cyclocostunolide, 80 mg β -cyclocostunolide, 150 mg arbusculin B, 20 mg 4 (R_f 055), 75 mg costunolide and 80 mg 11 α ,13-dihydrocostunolide Known compounds were identified by comparing the 400 MHz ¹H NMR spectra with those of authentic material, amounts being determined by wt All compounds were homogeneous by TLC in different solvent mixtures

2β-Acetoxylabd-8(17)-en-15-oic acid (1) Colourless oil, which was purified as its methyl ester (CH₂N₂, TLC, Et₂O-petrol, 1 3, R_f 0 62), IR $v_{\rm max}^{\rm CQL}$ cm $^{-1}$ 1735 (CO₂R, OAc), MS m/z (rel int) 378 160 [M] $^+$ (3) (C₂₃H₃₈O₄ 378 160), 347 [M - OMe] $^+$ (0 5), 318 [M - HOAc] $^+$ (84), 303 [318 - Me] $^+$ (19), 189 [C₁₄H₂₁] $^+$ (11), 135 [C₁₀H₁₅] $^+$ (100), $^{-1}$ H NMR (400 MHz, CDCl₃) δ5 14 dddd (H-2, J = 4, 4, 4, 4 Hz), 1 98 m (H-7α), 2 39 br d (H-7β, J = 13 Hz), 2 27 dd (H-14, J = 15, 6 Hz), 2 11 dd (H-14', J = 15, 8 Hz), 0 91 d (H-16, J = 7 Hz), 4 85 and 4 49 br s (H-17), 0 95 s (H-18), 0 89 s (H-19), 0 84 s (H-20), 2 01 s (OAc), 3 65 s (OMe)

$$[\alpha]_{24^{\circ}}^{\lambda} = \frac{589 \quad 578 \quad 546 \quad 436 \text{ nm}}{-28 \quad -34 \quad -41 \quad -71} \text{ (CHCl}_3, c \ 10)$$

This compound was identical with the acetate of the corresponding alcohol from Fleischmannia principes [7]

3α-Hydroperoxyarbusculin B (4) Colourless oil, IR $v_{\text{max}}^{\text{CCL}}$ cm⁻¹ 3600 (OH), 1775 (γ-lactone), MS (CI, isobutane) m/z (rel int) 265 [M+1]⁺ (7), 247 [265 – H₂O]⁺ (100), 231 [265 – H₂O₂]⁺ (20), ¹H NMR (400 MHz, CDCl₃) δ1 10 s (H-14), 2 04 d (H-15, J = 15 Hz), 6 16 d and 5 46 d (H-13, J = 3 Hz), 4 52 ddq (H-6, J = 11, 15, 15 Hz), 2 65 ddddd (H-7, J = 11, 10, 3, 3, 3 Hz), 4 20 br s (H-3), 7 84 br s (OOH)

8-O-Dihydroeuparın 6-O-methyl ether (5) Colourless oil, IR v_{max}^{CCL} cm $^{-1}$ 3520 (OH), 1630, 920 (C=CH₂), MS m/z (rel int)

$$\begin{array}{c} AcO \\ \begin{array}{c} 12 \\ 13 \\ 19 \end{array} \begin{array}{c} 12 \\ 10 \\ 10 \\ 18 \end{array} \begin{array}{c} 14 \\ 15 \\ 17 \end{array} \begin{array}{c} CO_2H \\ 15 \\ 17 \end{array}$$

5 R=H 6 R=Ac

232 110 [M]⁺ (8) (calc for $C_{14}H_{16}O_3$ 232 110), 214 [M $-H_2O$]⁺ (100), 199 [214 -Me]⁺ (8), 171 [199 -CO]⁺ (17), ¹H NMR (CDCl₃), $\delta 6$ 54 s (H-3), 7 46 s (H-4), 6 99 s (H-7), 5 15 q (H-8, J=7 Hz), 1 53 d (H-9, J=7 Hz), 5 69 and 5 09 br s (H-11), 2 10 br s (H-12), 3 91 s (OMe).

6-O-Methyl-8-O-dihydroeuparın-8-O-acetate (6) Colourless oil, IR $v_{\text{max}}^{\text{CCl}}$ cm⁻¹ 1740, 1235 (OAc), 1620 (aromate), MS m/z (rel int) 214 [M – HOAc] + (100), 199 [214 – Mc] + (4), 171 [199 – CO] + (31), ¹H NMR (CDCl₃) $\delta 653 \, brs$ (H-3), 748 s (H-4), 696 s (H-7), 626 q (H-8, J=7 Hz), 150 d (H-9, J=7 Hz), 569 and 509 brs (H-11), 209 brs (H-12), 210 s (OAc), 387 s (OMe)

Acknowledgement—We thank B L Turner, University of Texas at Austin, for collection of plant material

REFERENCES

1 Robinson, H and King, R M (1977) in The Biology and Chemistry of the Compositae (Heywood, V H, Harborne,

- J B and Turner, B L, eds), p 437 Academic Press, London
- 2 Amaro, J M and Adrian, M (1982) Rev Latinoam Quim 13, 110
- 3 Bohlmann, F, Dutta, L and Kerr, K (1980) Phytochemistry 19, 691
- 4 Kulkarni, G H, Kelkar, G R and Bhattacharyya, S C (1964) Tetrahedron 20, 2639
- 5 Irwin, M A and Geissman, T A (1969) Phytochemistry 8, 305
- 6 Joshi, B S, Bawdekar, A S, Kulkarni, G H, Kelkar, G R and Bhattacharyya, S C (1966) Tetrahedron 22, 2331
- 7 Bohlmann, F, Grenz, M, Jakupovic, J, King, R M and Robinson, H (1984) Rev Latinoam Quim 15, 1
- 8 Bohlmann, F, Jakupovic, J and Lonitz, M (1977) Chem Ber 110, 301
- 9 Tomassini, T C B and Gilbert, B (1972) Phytochemistry 11, 1175
- 10 Bohlmann, F and Grenz, M (1977) Chem Ber 110, 295
- 11 Bohlmann, F, Zdero, C, King, R M and Robinson, H (1984) Phytochemistry 23, 1979